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Question: Review the literature on continuous learning DSMs, comparing and contrasting the 

various models, and include a discussion of emerging architectures in machine learning that are 

not necessarily models of human cognition but have shown success at semantic tasks and have 

promise at elucidating human mechanisms (e.g., feedforward and recurrent networks). What 

common trends emerge as necessary constraints on human mechanisms of continuous semantic 

learning?  

 

Introduction 

Distributional models of semantic memory (DSMs; eg. Landauer & Dumais, 1997) have 

been hugely successful in cognitive science, explaining how humans transform first-order 

statistical experience with language into deep representations of word meaning. These models are 

all based on the distributional hypothesis from linguistics (Harris, 1954) and specify mechanisms 

to formalize the classic notion that “you shall know a word by the company it keeps” (Firth, 1957). 

The commonality to all DSMs is that they use co-occurrence counts of words across contexts in 

linguistic corpora and exploit these statistical redundancies to construct semantic representations. 

There are dozens of DSMs in the cognitive literature now, with learning mechanisms inspired by 

different theoretical camps ranging from Hebbian learning to probabilistic inference (for reviews, 

see Gunther, Rinaldi, & Marelli, 2019). In this paper I will consider multiple DSMs and stress the 

importance of sequential learning and contextualized representations as necessary constraints on 

human mechanisms of semantic learning. In the first section of this paper I will discuss a set of 

traditional DSMs to highlight the importance of sequential learning and implications each model 

has for human semantic memory and learning. Additionally, I will draw connections between the 

important mechanistic building blocks first introduced by these models and how they have 

informed modern DSMs. In the second section of this paper, I will discuss four modern DSMs to 
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highlight the importance of contextualized vectors. To do this I will introduce two static vector 

models and two contextualized vector models and discuss the advantages and disadvantages of 

both representation types while also discussing the implications each representation has for human 

semantic learning. 

 

Sequential Learning in Traditional DSMs 

In this section of the paper I will introduce three traditional DSMs: Latent Semantic 

Analysis (LSA), Simple Recurrent Networks (SRNs), and the Hyperspace Analogue to Language 

(HAL). Both HAL and the SRNs are able to learn sequentially while LSA cannot. Below I will 

delve into the advantages and disadvantages of both types of models and discuss implications for 

human semantic learning. 

 

Latent Semantic Analysis (LSA) 

 One of the most popular DSM models within psychology is the Latent Semantic Analysis 

(LSA) model (Landauer & Dumais, 1997). To begin analysis, a word-by-document frequency 

matrix is created from a text corpus. This matrix has n rows, one for each word, and m columns, 

one for each document. Then, the raw frequency counts for each word are typically transformed 

in two ways. First, the frequencies are converted to its log and second, the log frequencies are 

weighted based on the entropy over documents within the corpus. The result of this transformation 

is that the relative importance of words which appear in many different contexts is reduced 

compared to words which only appear in few contexts. After this initial transformation, the matrix 

is compressed via Singular Value Decomposition (SVD). SVD is a form of factor analysis and 

allows any matrix to be decomposed into the product of three other matrices. After applying SVD 

to the matrix, the latent semantic components with the highest eigenvalues are kept. These 
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components exist in a reduced semantic space and represent how words co-occur over the analyzed 

corpus. Each word in the corpus is represented as a vector pattern over these latent semantic 

components. The result of this process is the creation of abstract representations of each word 

using the frequency of co-occurrence counts. The application of SVD to the word-by-document 

frequency matrix allows the second order relationships between words to emerge, so even if two 

words never directly occurred together they can have similar patterns over the latent semantic 

components. Typically, word vectors are compared by calculating the cosine similarity between 

the vectors.   

 LSA has successfully modeled many psychological phenomena and is still used within the 

field today. In the original paper, Landauer and Dumais (1997) showed that the model was able to 

fit human data in a variety of tasks including, the Test of English as a Foreign Language (TOEFL), 

semantic priming tasks, and the rate of acquisition of vocabulary knowledge of school children. 

Beyond the original model verifications, LSA is able to accurately model analogical reasoning 

(Ramscar & Yarlett, 2003) and predict text coherence and comprehension (Foltz, 1996). 

Additionally, LSA is still commonly used as a diagnostic tool for psychiatric and neurological 

populations. In fact, a recent meta-analysis of these types of studies determined that only 4 out of 

21 studies used linguistic features from a model other than LSA (de Boer et al., 2018).  

 However, though LSA has had remarkable success in fitting human psychological data, 

one major objection to the model is the lack of cognitive plausibility. One criticism of LSA is that 

it is a bag-of-words model and makes no use of word-order information (Perfetti, 1998). This 

means that if LSA were to analyze a corpus and then analyze the same corpus where words were 

randomized within each document, the representations produced from both corpora would be 

exactly the same. These types of models are undesirable as word-order is an important source of 

information in language. Another, and possibly more serious criticism of LSA is that it is unable 
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to learn sequentially. In order to perform SVD on the word-by-document matrix, the entire corpus 

must be available. From a psychological standpoint, the creation of the word-by-document matrix 

can be said to represent a person’s episodic memory, which is then abstracted via SVD into 

semantic memory. However, the inability of the model to learn sequentially suggests a form of 

learning which requires all episodic memories to be experienced before any semantic memories 

are created. Landauer and Dumais (1997) address this criticism by stating that they don’t actually 

believe the brain performs SVD on a co-occurrence matrix but that it is some similar mathematical 

operation. This assertation, however, doesn’t alter the psychological implications of the inability 

to learn sequentially.  

 

Simple Recurrent Networks (SRN) 

 One of the earliest semantic models able to learn sequential dependencies in language were 

simple recurrent networks (SRN; Elman, 1990; Servan-Schreiber, Cleeremans, & McClelland, 

1991). An SRN is a connectionist network that predicts input sequences by making use of a context 

layer. The context layer is created by copying the pattern of activation in the hidden layer onto the 

units in the context layer. The context units are then fed into the hidden layer again along with the 

input units. So, the context units act as a form of memory for the network and the SRN can 

remember sequential dependencies over multiple time steps. In these models, words are 

represented as the pattern of activation across the hidden layer. SRNs are able to predict the next 

word in a sequence (Elman, 1990) and can track some long-term dependencies (Elman, 1995). 

Unfortunately, these models were unable to scale up to natural language corpora and were limited 

in the amount of sequential information they could remember over many time steps.  

 While SRNs were not true DSMs, due to the limited amount of text data they could handle, 

the ideas introduced with these models were extremely important for the development of 
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continuous DSMs today. First, the notion of sequential dependency in language is a crucial 

component to any modern DSM and is critical to human language use. Second, the error-driven 

learning method employed by this model has been successfully used in modern predictive neural 

networks, an architecture which is applied to both semantic modeling and machine learning tasks. 

With modern computational advances, the predictive neural network is able to improve upon the 

fundamental aspects of the SRN and will be discussed in depth later in this paper. 

 

Hyperspace Analogue to Language (HAL) 

The Hyperspace Analogue to Language (HAL; Lund & Burgess, 1996) is one of the first 

true continuous DSMs and is able to handle much larger corpora than the SRN. This model uses a 

sliding window method to create vector representations of words within a corpus. The words in 

the window are recorded as having a higher co-occurrence strength the closer they are to each 

other in a sentence. For example, in the sentence, “The dog caught the ball”, the word dog and 

caught would be coded as having a higher co-occurrence than dog and ball.  The window is moved 

in one-word increments across the entire corpus. The result is a co-occurrence matrix with the 

entire corpus vocabulary as both axes, so each cell in the matrix represents the summed co-

occurrence count of a word pair. The word pairs in HAL are direction sensitive, meaning the word 

pair AB may have a separate co-occurrence count than the word pair BA. The resulting semantic 

representation of each word is a vector of distance weighted co-occurrence values to all other 

words in the corpus. The distance between these word vectors is calculated by using the Minkowski 

distance metric, 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	 +∑(|𝑥0 − 𝑦0|)4
5       (1) 
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where r can be set to either 1 or 2. Typically, Euclidean distance (r = 2) is used for HAL but Lund 

and Burgess (1996) have shown that Manhattan distance (r = 1) is correlated with semantic priming 

in lexical decision as well. HAL has been successful in modeling a wide range of semantic and 

associative priming phenomena (Lund & Burgess, 1996) and introduced the popular sliding 

window method of computation.  

 One problem with HAL is that very frequent words, such as “a” or “and”, tend to cause 

similarity measures to be imbalanced. This is because most words will commonly co-occur with 

words such as “a” or “and” without conveying much about the semantic relatedness between the 

two words. There are a variety of methods to deal with this problem such as normalizing the co-

occurrence matrix (e.g. COALS; Rohde, Gonnerman, & Plaut, 2006). While HAL is affected by 

this issue, it is not unique to co-occurrence models. This problem still exists in modern models and 

is commonly dealt with by deleting the 200 most common words from the corpus altogether during 

pre-processing. While this solution is not ideal, removing the most common words (often referred 

to as stop-words) allows semantic models to capture meaningful relationships between the 

remaining words in the corpus. Another problem with HAL is the size of the co-occurrence matrix. 

When applied to large natural language corpora, the co-occurrence matrix can get unmanageably 

large (Kanerva, 2009). Because of this, it is common in applications of HAL to select only a subset 

of columns within the co-occurrence matrix that have the most variance for further analysis (Lund 

& Burgess, 1996). While HAL is still able to successfully model semantic phenomena, this 

drawback raises some questions about the cognitive plausibility of constructing co-occurrence 

matrices. In response to the memory overflow issues, modern semantic models have largely 

abandoned the co-occurrence matrix in favor of vector representations.  
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Discussion 

 LSA, SRNs, and HAL each have different implications for semantic memory. LSA is able 

to efficiently leverage global statistical information from a text corpus and has been remarkably 

successful at fitting psychological data. However, LSA is unable to learn sequentially which not 

only raises questions of cognitive plausibility but also means it is unable to make use of local 

context data such as word order. SRNs were one of the first models to demonstrate the ability to 

learn sequential dependencies in language via predictive learning. While these models were unable 

to scale up to natural language corpora, the predictive learning method has been very successful 

in modern predictive neural networks which dominated the NLP field for a number of years. 

Finally, HAL introduced the sliding window method which has been used by many successive 

models, such as predictive neural networks and random vector accumulation models. This method 

allows HAL to learn sequentially and make use of local word context. However, HAL has 

problems with memory overflow due to the construction of a co-occurrence matrix. While this is 

not a problem when using smaller corpora, modern text corpora can contain billions of words—

necessitating a more compact way to create and store word representations. 

 

Representation in Modern DSMs 

The widely accepted solution to memory overflow caused by co-occurrence matrices is the 

adoption of the vector word representation. There are two primary types of vector representations: 

static and contextualized. In the following section I will introduce and discuss four modern DSMs: 

two that use static representations and two that use contextualized representations. One important 

topic that I will discuss in this section is word sense disambiguation—a task given to semantic 

models to correctly identify the appropriate sense of a word given context. Words with multiple 

senses are often very difficult for DSMs to handle correctly and is one major differentiating factor 
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between static and contextualized representations. Consequently, the ability to correctly represent 

words with multiple senses is a constraint on DSMs I believe should necessarily be included in 

any new state-of-the-art models. 

  

Static Representations 

Models which produce static representations have the most difficulty with word sense 

disambiguation because there is only one, averaged representation for each vocabulary word. Thus, 

if a word has multiple senses, multiple contexts for a single word ends up averaged into the final 

representation of that word—meaning the final representation ends up “split” in semantic space 

between each word sense. While all models that create static representations struggle with word 

sense disambiguation, some models have serious practical issues when it comes to learning vector 

representations of words with multiple senses in a sequential manner. The two static representation 

models I will be comparing are predictive neural networks, which are known to catastrophically 

forget word senses when learning sequentially, and random vector accumulation models which do 

not have problems with catastrophic forgetting. In this section I will outline the basic learning 

mechanism of each model, discuss catastrophic forgetting and why it occurs in predictive neural 

networks, and discuss the implications each model has for human semantic learning and memory. 

 

Predictive Neural Networks 

Recently, there has been a resurgence of neural network models across cognitive science 

and machine learning. This resurgence has included very successful predictive DSMs within 

connectionist architectures based on principles of error-driven learning derived from theories of 

reinforcement learning. Earlier work explored neural networks to learn distributed semantic 

representations from artificial languages using simple recurrent networks (e.g., Elman, 1990) and 
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feed-forward networks (Rogers & McClelland, 2004). Neural networks were essentially non-

existent in the 1990s and early 2000s as they couldn’t scale up and learn from natural language 

corpora. Rather, the field became fixated on algebraic models based on dimensional reduction 

mechanisms such as LSA (Landauer & Dumais, 1997).  

The standard predictive network currently discussed in the literature is the word2vec model 

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). Word2vec is a feedforward neural network 

with localist input and output layers that contain one node per word in the vocabulary, and a hidden 

layer of ~300 nodes that is fully connected to both input and output layers. The word2vec 

architecture has two possible model directions: The context may be used to predict the word 

(referred to as a CBOW), or the word may be used to predict the context (a skipgram).  The 

skipgram model direction will be used as the demonstration example because it maps conceptually 

onto most connectionist models of cognition. When a linguistic context is sampled (e.g., “save 

money bank”) the target node is activated at the input layer (+bank) and activation is forward 

propagated to the output layer, with the desired output being the observed context words (+save, 

+money). The error signal (observed output – desired output) is applied to the network with 

backpropagation (Rumelhart, Hinton, & Williams, 1986) to correct the weights and make it more 

likely that the correct output pattern will be generated the next time this target word is encountered. 

The semantic representations are created by exporting the final pattern of weights across the input-

to-hidden layer. Two words that have similar vector patterns across these weights are predicted by 

similar contexts, even if they never co-occur with each other, akin to (but superior in data fit) the 

second-order inference vectors learned by traditional DSMs.  

 Word2vec has received considerable attention in the machine learning literature due to its 

ability to outperform all previous DSMs (Baroni, Dinu, & Kruszewski, 2014). To cognitive 

science, this success is of considerable interest as word2vec implements a potentially biologically 
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plausible neural architecture and links to classic theories of reinforcement learning (e.g., Rescorla 

& Wagner, 1972), drawing theoretical connections to other areas of cognition with a unified 

mechanism. One feature of particular interest in these models is that they are sequential learners, 

in contrast to earlier algebraic DSMs, like LSA, which were unable to learn sequentially. The 

sequential learning of predictive neural networks has been taken by some as additional evidence 

in favor of cognitive plausibility of the models. Additionally, Mandera, Keuleers, and Brysbaert 

(2017) argue that a predictive model is a theoretical leap forward as they solve the memory 

overflow issues co-occurrence models such as HAL faced by not constructing a co-occurrence 

matrix at all.  

While the hype surrounding predictive neural networks is warranted given their success at 

fitting human data, it is important to remember that the models also inherit the weaknesses of their 

predecessors. One weakness in particular that models such as word2vec are likely to exhibit is 

catastrophic forgetting (CF): The tendency of neural networks to completely loose previously 

learned associations when encoding new ones. In McCloskey and Cohen’s (1989) seminal work 

on catastrophic forgetting, a standard neural network was trained to learn single-digit “ones” 

arithmetic facts (e.g., 1 + 1, 9 + 1) using backpropagation until the network had perfectly learned 

the associations. They next trained the same network on a new set of single-digit “twos” facts (e.g., 

2 + 1), until the network had been trained to respond correctly to all of them. While the network 

was able to correctly answer the twos facts, it had completely lost the previously learned ones 

facts—the associations that had been trained to zero error were now lost completely. The learning 

of new associations with backpropagation overwrote the previous learning. The CF pattern was 

duplicated in a second experiment by McCloskey and Cohen by simulating standard tasks of paired 

associate word learning. Further, Ratcliff (1990) demonstrated that in standard sequential learning 
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paradigms, backpropagation networks catastrophically forget previous items as new items are 

sequentially learned, unlike humans performing the same tasks. 

Catastrophic forgetting in word2vec occurs when the model attempts to learn words with 

multiple senses in a sequential fashion (Mannering & Jones, 2020). For example, take the word 

bank which has at least two senses: money-bank and river-bank. Due to CF, if the model learns 

the money sense before learning the river sense, then the money sense will be forgotten—skewing 

the semantic representation of bank towards the river sense of the word. Figure 1 illustrates this 

situation. The left panel shows the ideal situation if the contexts of a corpus were randomly 

sampled, with bank equidistant to its two senses. The right panel shows the case where river 

contexts have been sampled most recently—in this case, bank is biased by backpropagation to the 

more recent sense despite the fact that it is equally frequent in the corpus as the money sense. 

 

 

Additionally, while the backpropagation algorithm links to classic theories of 

reinforcement learning, it has been criticized for being biologically implausible. Some popular 

criticisms are, among others, (1) that the computation is only linear, whereas biological systems 

contain both linear and non-linear processes, (2) that biological neurons communicate via binary 

values not continuous values, and (3) if backpropagation were used in the brain, the feedback paths 

would need to use precisely symmetric weights to the feedforward paths (known as the Weight 

�����	��� ����
 �����	��� ����


Figure 1. A schematic illustration of the semantic space of bank as a function of sense learning order 
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Transport Problem: Benigo, Lee, Bornschein, Mesnard, & Lin, 2015; Grossberg, 1987). While 

there are many concerns about the biological plausibility of backpropagation as it is now there is 

a huge ongoing effort within the neuroscience and machine learning fields to alter the algorithm 

to make it more plausible.  

 

Preventing Catastrophic Forgetting in Predictive DSMs 

Recently, algorithms that alter the plasticity of weights and weight update functions of 

neural networks have become the de facto solutions for catastrophic forgetting within the machine 

learning field. One such algorithm is Elastic Weight Consolidation (EWC) which has shown great 

promise at learning new associations while insulating previously learned associations against 

forgetting (Kirkpatrick et al., 2017). EWC constrains the weight space of a deep learning network 

within the optimal parameter space of a previously learned task, essentially having the effect of a 

spring (or elastic) on already learned weights that are important to a previously learned task. 

Kirkpatrick et al. demonstrated that EWC networks could learn new strategies and associative 

patterns with minimal loss to previously learned but orthogonal associative patterns. However, 

Mannering and Jones (2020) found that EWC was unable to prevent catastrophic forgetting when 

applied to DSMs. They argue that EWC as it is currently implemented is not theoretically plausible 

for any task which requires unsupervised learning because the new loss function must be “switched 

on” when the network is learning a second task, i.e. the network needs to be externally told when 

senses are changing, which skirts the problem of learning the signal. This is especially 

cumbersome in NLP where it is impossible to supervise learning to the extent which EWC requires. 

Furthermore, EWC is unable to scale up well with its current implementation. These results 

suggest that efforts to mitigate the effects of catastrophic forgetting need to be interdisciplinary. 

Within the machine learning and the neuroscience community, insulating, or “vaccinating”, 
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predictive neural networks from catastrophic forgetting is an emerging area that has seen some 

innovation in recent years. However, these types of solutions only consider the problem as it relates 

to strictly machine learning tasks such as categorization or image classification tasks.  

Other possible solutions from the machine learning field include dropout (Hinton, 

Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012) and Gradient Episodic Memory 

(Lopez-Paz & Ranzato, 2017). Dropout is an addition to stochastic gradient descent training in 

which the input and hidden layers of a network are multiplied by a binary mask with each training 

instance that is learned. In effect, this allows many different networks to be trained on subsets of 

the training set and the resulting model predictions to be averaged together, effectively regularizing 

the model’s predictions over sequenced training sets. Although it has been claimed that dropout 

acts somewhat similar to how hippocampal-neocortical complimentary encoding systems function 

(Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013) the link is rather tenuous, and is the same 

theoretical claim that is made with EWC and various other algorithms that are computationally 

quite different. Other practical approaches include Gradient Episodic Memory (Lopez-Paz & 

Ranzato, 2017), which basically retains exemplars of previous tasks when learning new ones. But 

none of these approaches are likely to be adaptable to the learning of multiple senses of words, 

and all lack cognitive and neural plausibility (for a review see Parisi, Kemker, Part, Kanan, & 

Wertmer, 2019). However, while these approaches have seen some success in mitigating 

catastrophic forgetting when applied to machine learning tasks, there is some doubt as to whether 

these solutions would be adequate when used with a DSM. Often times, these types of solutions 

are not theoretically or practically feasible in the field of semantic modeling due to the huge 

amount of data necessary to train DSMs.  

Other possible solutions take their organizations from the anatomical and functional 

organization of the brain. For example, complimentary systems theory (McClelland, McNaughton, 
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& O’Reilly, 1995) posits that a slow neocortical processing system and faster hippocampal 

encoding system in the human brain allows deep processing of predictive information while 

avoiding problems that come with CF. The neocortical system learns deep abstractions but is 

susceptible to CF, however, it is complimented by the hippocampal replay of recent episodic 

experience. More recent neurobiological models of memory, such as the cascade model (Benna & 

Fusi, 2015), manage to avoid problems of CF by implementing a bimodal system that initially 

learns very rapidly but gradually transfers information to a slower-learning mechanism. For 

reinforcement learning of procedural tasks in machine learning, the most successful convolution 

networks of visual perception use “experiential playback” to allow them to randomize over the 

training input that is otherwise experienced in a serial manner (Mnih et al., 2015), very much like 

complimentary learning systems theory.  

Finally, other architectures, which I will discuss later in this paper, such as exemplar-based 

models and random vector accumulation models, could also be solutions to CF. These architectures 

are theoretically immune to catastrophic forgetting and incorporate different theoretical 

frameworks of learning (see M.N. Jones, Willits, & Dennis, 2015). Exemplar-based models, unlike 

other DSM models which store an abstract semantic representation, store only episodic context 

(M. N. Jones, 2018). These models construct semantic meaning from the aggregation of episodic 

context when presented with a memory cue (Jamieson, Johns, Avery, & Jones, 2018) and produce 

contextualized representations. Random vector accumulation models, which I will discuss next, 

should be immune to catastrophic forgetting because they utilize principles of associative learning 

and do not rely on an error signal—learning via a simple Hebbian co-occurrence learning 

mechanism.   
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Random Vector Accumulation (RVA) Models 

Unlike predictive neural networks, which are affected by CF due to the error signal 

produced during learning, RVA models have been shown to be immune to CF (Mannering & 

Jones, 2020) most likely because they utilize principles of associative learning and do not rely on 

an error signal to learn. These models learn via a simple Hebbian co-occurrence learning 

mechanism. A prominent example of an RVA model is the Bound Encoding of the Aggregate 

Language Environment (BEAGLE; M. N. Jones & Mewhort, 2007) model. Which is, at its core 

an RVA with the additional ability to learn and represent order information.  The most basic RVAs 

first begin by initializing two random vectors from an arbitrary distribution and of arbitrary 

dimensionality for each word encountered in a corpus. One of these vectors, called the environment 

vector, is unique to each word in the vocabulary, and the other, the memory vector, is a summation 

of all context words. The update function for the memory vector of each word in the vocabulary 

is described in Equation 2: 

𝑚0 = 	𝑒078 +	𝑒0:8      (2) 

where mi is the memory vector for an arbitrary word in a corpus, ei-1 is the unique environment 

vector for the context word before i, and ei+1 is the unique environment vector for the context 

vector after i. So, the memory vector for word i stores the context vectors for every other word that 

appears in context with word i.  

 In addition to the memory vectors created for each word, BEAGLE calculates an order 

vector via circular convolution for words in a given sentence. The order information for a word, 

w, is produce by binding it to all n-gram chunks in the same sentence as w. The position of w is 

represented via a placeholder vector, F, which is then convolved with the environmental vectors 

of the words surrounding w in the sentence. Similar to the environmental vectors, F is held 

constant across training. The bindings created for w are then summed together to produce the order 
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vector specific to w. Take for example the sentence, “A happy cat”. The bindings for the word 

“happy” would consist of two bigrams and one trigram:  

𝑏𝑖𝑛𝑑=>??@,8 = 	 𝑒B 	∗ 	Φ 

𝑏𝑖𝑛𝑑=>??@,E = Φ ∗ 𝑒	F>G 

𝑏𝑖𝑛𝑑=>??@,H = 	 𝑒B 	∗ 	Φ ∗ 𝑒F>G    (3) 

 

and the order vector for the word “happy” is calculated by: 

𝒐=>??@ = 	∑ 𝑏𝑖𝑛𝑑=>??@,JKL	H
J	L	8      (4) 

where n is the total number of convolution bindings produced for the word “happy” and bindhappy,j 

represents the jth binding for “happy”.  

BEAGLE has been shown to successfully model numerous semantic phenomena such as 

semantic priming and fitting semantic distance norms (M. N. Jones & Mewhort, 2007). BEAGLE 

improves on previous DSMs such as LSA by incorporating word order information and by 

implementing a sequential learning algorithm. BEAGLE, and other RVA models, are also able to 

learn sequentially without incurring catastrophic forgetting like predictive neural networks due to 

their lack of error-signal.  

However, while RVA models do not face difficulties with sequential learning like 

predictive neural networks do, they have faced criticisms in the past. RVA models in particular 

are known to have problems with metric space compression—causing most word similarities to be 

compressed between 0 and 1—which limits the ability of the model to discriminate between related 

and unrelated words (Asr & Jones, 2017). It was initially believed that predictive neural networks 

were able to more accurately discriminate between words because of back-propagation or the 

connectionist architectures they commonly use (which is one of the reasons this architecture has 

become so popular). However, recently the role of negative sampling in DSMs has been explored 
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in more depth by Johns, Mewhort, and Jones (2019) who find that the success predictive neural 

networks have at discriminating between words is due to the inclusion of negative information in 

the training data—not the use of connectionist architecture or predictive error correction. In fact, 

Johns et al. demonstrated when negative sampling information is included in the training data for 

other DSMs, including RVA models, their ability to discriminate words is on par with predictive 

neural networks. This indicates that it is not error correction that is producing the benefit of 

predictive models, but the benefit can be seen in errorless Hebbian learning models if they also 

implement negative sampling.   

While RVA models may seem especially suited to replace predictive neural networks given 

their recent ability to incorporate negative sampling information, they still share the same pitfalls 

as word2vec when it comes to their static representations. RVA models, as well as word2vec, 

produce a single, averaged word vector per word in the vocabulary, meaning they also have trouble 

with word sense disambiguation. So, while the RVA model will not catastrophically forget one 

sense of a word when learning a new sense, the representation will be “split” in semantic space 

between the word’s various meanings. Unfortunately, this problem is universal to all models which 

produce static vector representations. 

 

Contextualized Representations 

In the next section of the paper, I will introduce and discuss DSMs which produce 

contextualized representations. A recurring problem with the previously discussed models is the 

static representations. While some models like the RVA do not catastrophically forget word senses 

when learning sequentially, they are still unable to correctly represent words with multiple senses. 

One architecture that I will discuss is an exemplar-based DSM which is able to store all context 

information in memory and adjust a word’s representation based on context at the time of retrieval. 
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After this I will explain and discuss the Transformer and BERT models which have recently taken 

the NLP field by storm. These models are able to create contextualized word representations while 

avoiding some of the downfalls of the exemplar-based DSMs and have been hugely successful at 

modeling large natural language corpora. However, having not originated from a cognitive field 

like the exemplar-based DSM, it is less clear what the implications for human learning and 

semantic memory are for these models.  

 

Exemplar-Based DSMs 

So far, the models discussed in this paper have all produced static word representations. 

That is, they create a single, averaged vector representation for each word in the corpus vocabulary. 

However, the static representations used by most modern DSMs, akin to the prototype model from 

the category learning field, are at odds with current directions in the fields of categorization and 

episodic memory. A classic debate within the field of category learning is between the prototype 

and exemplar-based models. Exemplar models suggest that people represent categories by storing 

individual memory traces (Nosofsky, 1986) while prototype models suggest that people create a 

“prototypical” representation of a category, which is typically an average computed over the 

training items (Reed, 1972). Within the categorization literature, the prototype model is almost 

unanimously considered inferior to the exemplar-based models because prototype models are 

unable to account for human behavior when category structures are nonlinear. Additionally, 

exemplar models have been shown to better predict human behavior even when the category 

structures are linear (Stanton, Nosofsky, & Zaki, 2002). M. N. Jones (2017) suggests that the 

prototype-style DSMs that produce static representations experience the same disadvantages as the 

prototype models of categorization.  



 21 

One solution to the problems of static representations is to use an exemplar-based DSM 

which produces contextualized representations. These models, similar to the exemplar models in 

the categorization literature, represent memory as a word-by-context matrix. That is, every time a 

word appears in a corpus the surrounding context is recorded. Then, when the semantic 

representation is retrieved it is constructed on the fly as the average of other words in memory, 

weighted by their similarity to the target word. Thus, these models represent a different theoretical 

approach to semantic abstraction. The difference between most prototype DSMs is the learning 

mechanism for creating the final static representations. Prototype DSMs posit that semantic 

abstraction occurs at encoding, thus the learning mechanism each model employs is typically the 

point of interest. The exemplar-based DSM, however, posits that semantic abstraction does not 

come about via a learning mechanism but is a byproduct of retrieval. Jamieson et al. (2018) have 

successfully implemented an exemplar-based DSM called the Instance Theory of Semantics (ITS) 

model. ITS was not only able to reproduce classic semantic phenomena commonly used to support 

prototype DSMs, but was also able to correctly represent words with multiple senses where 

prototype models struggle due to their static semantic representations.  

In addition to being able to correctly handle represent words with multiple senses, 

exemplar-based DSMs should also theoretically immune to CF when learning sequentially. These 

models do not use back-propagation, which is commonly thought to be the underlying cause of 

CF. However, while these models could be a promising solution to CF and word sense 

disambiguation, they have one major drawback. These models are designed to store the context 

information every time a vocabulary word appears in the corpus. While this mechanism gives these 

models an advantage over prototype DSMs when it comes to word sense disambiguation, it also 

limits the corpus size these models can handle. There are only so many context instances that can 

be stored in memory before space begins to run out. This problem is similar to what HAL faced 
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and unfortunately, there is no agreed-upon solution, putting these models at a disadvantage when 

it comes to popular NLP applications of DSMs.  

 

Transformers  

The Transformer architecture (Vaswani et al., 2017) originated in the machine learning 

field and is the basis for many current state-of-the-art machine translation and language models 

(such as BERT). Because the Transformer architecture originated in the machine learning field, it 

has a different history than the DSMs I’ve previously discussed in this paper. Models developed 

in the machine learning or NLP fields are often used for different purposes than DSMs.  While 

some models can be considered semantic models, often times the people using them are more 

interested in practicality than theoretical implications of the potential cognitive mechanisms 

involved. While the Transformer architecture originated from the machine learning field and has 

mostly been applied to NLP rather than cognitive tasks, it is useful to learn about because it is able 

to create contextualized representations, performs extremely well on tasks all DSMs are expected 

to perform, learns sequentially, and introduces an attention mechanism that could prove to be an 

interesting addition to the cognitive mechanisms used by DSMs.  

Because the Transformer originated in the machine learning field, it is more similar to 

various older NLP architectures, such as the Long-Short-Term-Memory (LSTM) models, than 

older DSMs. The key innovation of the Transformer is that it utilizes a new attention mechanism 

without using a Recurrent Neural Network (RNN). Until recently, RNNs were one of the most 

common ways to capture sequential dependencies in models used for NLP tasks. Unfortunately, 

RNNs are slow and have issues learning long term relationships between words due to the 

vanishing gradient problem—a problem with gradient based learning functions that causes 

networks with many layers to be difficult to train. Vaswani et al. (2017) were able to show that the 
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Transformer, an architecture with only the attention mechanisms and no RNN, was able to out-

perform other sequential NLP models, such as the LSTM and RNN, in translation and other NLP 

tasks while also being able to more efficiently train on large data sets due to the parallel nature of 

the input data. 

The Transformer architecture can be seen below in Figure 2.  

 

Figure 2. Transformer architecture from 'Attention Is All You Need' by Vaswani et al. (2017) 
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The module group on the left makes up the Encoder and on the module group on the right 

makes up the Decoder. The Encoder takes the original sequence of input words and maps it to a 

high dimensional space. Then, the Decoder takes this mapping and translates it into a new 

sequence, typically a different language. Both the Encoder and Decoder consist of modules which 

are stacked on top of each other multiple times and commonly consist of a Multi-Head Attention 

layer and a Feed Forward Network layer. The basic Encoder and Decoder architecture used in the 

Transformer model is not a new feature and has been used before in LSTM models. Attention 

mechanisms have been introduced and used before the Transformer architecture as well. In fact, 

the first attention mechanisms were added as an additional feature to the RNN architecture 

(Bahdanau, Cho, & Bengio, 2014) allowing them to remember longer sequences of input. Vaswani 

et al. (2017) found that the attention mechanism was able to capture sequential dependencies 

without the RNN architecture, greatly reducing training time. Because the attention mechanism 

receives input in chunks, unlike RNNs which receive input one-by-one, they can learn the 

dependencies between inputs all at once and are highly parallelizable—a desirable feature in large-

scale NLP models. While the attention mechanism itself isn’t new, the use of Multi-Head Attention 

layers is the truly innovative aspect of Transformers.  

 The attention mechanism is responsible for the contextualized representations produced by 

Transformers. To begin, the attention mechanism must be given context-free vector 

representations as inputs. These representations are typically produced by an embedding layer and 

are similar to the embeddings produced by models like word2vec. These initial vectors are static 

and represent the average meaning of a word regardless of context. The goal of the attention 

mechanism after receiving these static representations, is to learn to dynamically transform the 

representations based on context (Note that the attention mechanism receives input in chunks, thus 

it is able to make use of the context provided by entire sentences). This happens in three steps. 
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First, for each word in a sentence, wi, the model must calculate how similar wi is to every other 

word in the sentence. Vaswani et al. (2017) calculate the similarity of each word in a sentence as: 

𝑄 ∙ 𝑄O       (5) 

where Q is a matrix of shape (input length, embedding dimensions). The resulting matrix is of 

shape (input length, input length) where Qi,j gives the similarity between words wi and wj. Second, 

once the similarities have been calculated, the attention mechanism must calculate attention scores 

of wi towards all other words in the sentence. This is done by taking the softmax of the similarity 

matrix by row: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 R S∙ST

+UVWUXX0KY_X0VUK[0\K[
]     (6) 

The result is a matrix with values between 0 and 1 whose rows each sum up to 1. For each word 

in the sentence, wi, attention scores are higher for words that are very similar to wi. Based on the 

context of the input sentence, different surrounding words can be given varying amounts of 

attention. For example, take the sentences “I am eating bass” and “I am eating undercooked bass” 

where wi = bass. In the first sentence, eating is the only word that’s very similar to bass, thus the 

attention of bass will be fully directed towards eating. However, in the second sentence, both eating 

and undercooked are similar to bass so the attention of bass will be split between the two words. 

In this way, attention must be distributed among all related words in a sentence.  

The third and final step to transforming word representations based on context is to update 

the static representations provided to the attention mechanism as input. To do this, the resulting 

matrix from step 2 (Equation 5) is multiplied with matrix Q. The result for each word in the 

sentence, wi, is a new representation that is the weighted average of every other word in the 

sentence with the weights given by the calculated attention scores. Thus, if the input sentence were, 
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“I like to eat bass”, the final representation of the word bass would be shifted towards the fish-

sense of the word whereas if the input sentence were, “I like playing the bass”, the final 

representation of the word bass would be shifted towards the guitar-sense of the word. 

 Given only one attention layer, it is not obvious how the Transformer architecture should 

be able to produce contextualized representations that handle words with multiple senses. Though 

the vectors change based on the input context, the output of the individual attention layers are still 

single vector representations per word. Meaning, if one attention layer encountered a word in 

multiple contexts, the averaged representation would get shifted around to match the most recent 

context. However, this potential problem is avoided via the Multi-Head Attention mechanism 

implemented in the Transformer framework. The Multi-Head Attention mechanism allows 

multiple word representations to be calculated in parallel, producing multiple sets of attention 

scores. Each individual attention layer is theoretically supposed to capture a particular linguistic 

property of the input. Then, the final contextualized word representations are created by 

concatenating each of the representations calculated by the individual attention layers—resulting 

in a contextualized vector representation that can handle words with multiple senses. 

 The Transformer architecture was a major breakthrough, speeding up training time by 

eliminating the need for RNNs while simultaneously improving the ability of language models to 

create contextualized vector representations. However, the Transformer in its most basic form is 

typically used for tasks such as translation, which, while immensely practical, are slightly less 

interesting than the implications this new architecture may have as a model of semantic memory. 

Thus, in the next section of this paper I will discuss the semantic implications of BERT: a new, 

cutting-edge language model which uses the Transformer architecture as a base. 
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Bidirectional Encoder Representations from Transformers (BERT) 

BERT (Devlin, Chang, Lee, & Toutanova, 2019) is currently the state-of-the-art model 

used in the NLP field and was successful enough to be integrated into Google’s search algorithm—

specifically to handle queries requiring more in depth natural language and conversational 

knowledge. Not only is BERT able to obtain groundbreaking results on common NLP benchmarks, 

but it is also able to perform word sense disambiguation better than other models through the use 

of contextualized representations. BERT makes use of the Transformer architecture (Vaswani et 

al., 2017) but is not the same as the vanilla architecture described above. BERT is a language 

model while the Transformer model was originally used for machine learning tasks. Since the goal 

of BERT is not to translate sentences, only the Encoder mechanism is used. Another difference 

between BERT and the vanilla Transformer is that BERT is a bidirectional model—allowing it to 

learn word contexts based on all surrounding words, both left and right. The other DSMs discussed 

in this paper and other models which use the Transformer architecture, like OpenAI GPT (Radford, 

Narasimhan, Salimans, & Sutskever, 2018), are unidirectional. OpenAI GPT specifically is a left-

to-right architecture, meaning every new token passed to the model can only attend to previously 

processed tokens within the attention layers. The unidirectional restriction is not optimal when 

processing input at the sentence level not only for practical purposes but for considerations of 

cognitive plausibility as well. When reading, humans can remember and understand the 

relationships between words in the beginning and end of a sentence, while unidirectional models 

struggle to do so. Thus, the true bidirectional processing ability of BERT is a huge advantage when 

it comes to concerns of practicality and cognitive plausibility. 

 BERT is trained in two steps: a pre-training phase and a fine-tuning phase. During the pre-

training phase, BERT is trained over unlabeled data via two strategies: the Masked Language 

Model (MLM) and the Next Sentence Prediction (NSP) objectives. Then, after the model is pre-
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trained, it is fine-tuned for a specific NLP task using labeled data from the specific task. Each new 

NLP task has different fine-tuned versions of the model. As a cognitive scientist, my interest in 

BERT is primarily in the methods used to pre-train the model and their implications for human 

learning. Thus, the methods used to fine-tune the model will not be discussed further as they are 

less informative of general semantic learning. Additionally, there is minimal difference between 

the pre-trained BERT model and the fine-tuned model (Devlin et al., 2019) making a discussion 

of both somewhat redundant.  

To begin the pre-training phase, BERT is trained using the MLM objective. Under the 

MLM training strategy, 15% of input tokens are replaced with a MASK token. The goal is to 

predict the original vocabulary word based on the surrounding context of the MASK token. The 

MLM strategy is what makes BERT a true bidirectional model. Usually, a bidirectional model 

would be the result of concatenating representations from both a left-to-right model and a right-

to-left model. This is because models are typically limited to either left-to-right or right-to-left 

architectures, since bidirectional training could allow words to “see themselves”, allowing a model 

to trivially predict the target word in context. However, the MLM training strategy, by masking 

certain input tokens, allows BERT to be trained bidirectionally without being able to trivially 

predict the masked word based on context. After completing the MLM training phase, the model 

is trained using the NSP strategy. The goal of NSP is to train a model that is able to understand the 

relationship between two sentences. The training data is easily created from any monolingual 

corpus and is presented to the model as pairs of sentences: sentence A and sentence B. The model 

is then tasked with predicting whether sentence B follows sentence A; 50% of the time sentence 

B does follow sentence A and 50% of the time sentence B is a random sentence from the corpus. 

While this is a very simple training strategy, Devlin et al. (2019) found that including this step in 
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the pre-training phase allowed BERT to perform significantly better on inference tasks such as 

question answering.  

 Both pre-training strategies employed by BERT are fundamentally an implementation of 

predictive learning. In fact, the goal of the MLM training strategy is similar to the CBOW training 

strategy employed by word2vec: to predict a target word given context. Though both training 

methods are predictive in nature, there are of course substantial differences between them. First, 

word2vec is considered a unidirectional model. Thus, word2vec is at a disadvantage compared to 

BERT when it comes to keeping track of contexts. As discussed before, the word embeddings 

created by word2vec are static, which prevents the model from handling words with multiple 

senses correctly. BERT on the other hand, is able to produce contextualized representations 

through the use of Multi-Head Attention modules which greatly improved performance on many 

NLP tasks including word sense disambiguation.  

 While the Multi-Head Attention modules are responsible for the contextualized 

representations produced by BERT and seem to serve a similar function to human attention when 

learning, the actual mechanism itself is not well understood. A commonly held view in the NLP 

field is that the attention mechanism is an important way to provide interpretability to the 

predictions made by a model. However, there is some work within the NLP field which claims that 

the attention weights are not interpretable and changing them has no significant effect on model 

prediction (Jain & Wallace, 2019) and contradictory work that claims that attention captures 

several interpretable linguistic concepts (Vig & Belinkov, 2019). Vashishth, Upadhyay, Tomar, 

and Faruqui (2019) show that attention weights are interpretable and correlate with feature 

importance measures when the attention weights are essential for the model’s prediction—which 

is not always the case. In fact, Kovaleva, Romanov, Rogers, and Rumshisky (2019) found that if 

attention heads were disabled one at a time, the model performance did not decrease and actually 
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increased in some cases. This suggests that the model may contain duplicate information in 

multiple attention heads and may be overparameterized. As of now, the nebulousness of the 

attention mechanism makes it fairly difficult to understand the exact implications the mechanism 

has for human learning—indicating a need for such work in the future. Regardless, the 

contextualized representations used by BERT have resulted in remarkable performance on NLP 

benchmark tasks as well as a leap in word sense disambiguation performance compared to its static 

representation competitors (Ethayarajh, 2019). 

 

General Discussion 

When debating the advantages and disadvantages of DSMs, cognitive scientists often focus 

on the learning mechanisms employed by each model. Indeed, the learning mechanism is important 

to the theoretical implications of each model and typically, there is some theoretical support for 

the learning mechanisms in question. Error-driven learning is supported by classic theories of 

reinforcement learning (e.g., Rescorla & Wagner, 1972), passive co-occurrence learning is 

supported by principles of associative learning (e.g., Murdock, 1982), and semantic abstraction at 

retrieval is supported by exemplar theories from the categorization literature (e.g., Nosofsky, 

1986). In this paper, however, I have taken a different approach to comparing and contrasting 

DSMs. Instead of focusing on and debating between learning mechanisms I have focused on the 

implications that sequential learning and contextualized representations vs. static representations 

have for human semantic memory. The ability to learn sequentially seems like an absolutely 

necessary feature to constrain DSMs to human mechanisms of learning. The psychological 

implications of models which can’t learn sequentially are too outlandish, particularly for a model 

of semantic memory. These models suggest a form of learning which requires all episodic 

memories to be present before any abstraction to semantic memory can occur. This is clearly not 
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the case in humans as we have access to semantic memory long before the end of our lives. 

Fortunately, most modern models have incorporated the ability to learn sequentially making 

further discussion of its necessity moot.  

While the ability to learn sequentially is practically ubiquitous in modern DSMs, each 

model faces its own unique challenges in doing so. One such challenge faced by predictive neural 

networks is catastrophic forgetting—the tendency to lose one set of associations when learning 

new ones. CF is unique to predictive neural networks and is caused by the specific learning 

mechanism employed by the model. CF is exposed in predictive DSMs, like word2vec, when 

attempting to learn representations for words with multiple senses considering. While CF is not a 

problem in other DSM architectures, like the RVA which do not use an error-signal to learn, these 

models are still unable to handle words with multiple senses correctly due to the static nature of 

the vector representations they produce.  

Many models that I’ve discussed in this paper are very successful at modeling and fitting 

psychological data and use static representations, so why should contextualized vectors be a 

necessary constraint for DSMs? The fact of the matter is, humans are able to effectively understand 

and perform word sense disambiguation while DSMs have struggled with this task since 

conception. The ability of DSMs to perform word sense disambiguation hit a brick wall (de Lacalle 

& Agirre, 2015) before contextualized vectors were widely introduced with the Transformer model 

and BERT. Contextualized vectors are not only superior to static vectors when it comes to NLP 

benchmarks, but they allow DSMs to more closely model human language ability. While 

contextualized vectors are fairly new, I introduced and discussed two models which make use of 

contextualized vectors: the exemplar-based DSM and the Transformer/BERT models. These 

models are very different in their origins. The exemplar-based DSM originated from the cognitive 
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science field and has very clear implications for human semantic memory, yet it suffers from 

memory overflow and is unable to scale up to the huge datasets commonly used in for training 

modern DSMs. On the other hand, the Transformer/BERT model originated from the machine 

learning and NLP fields and while it is easily able to handle the large natural language datasets, 

there have been relatively few studies investigating the cognitive implications of this model 

architecture. The deficits of each model suggest an interdisciplinary approach between cognitive 

science and NLP is necessary to really make use of and understand models that use contextualized 

vector representations.  

Conclusion 

Throughout this paper, I have reviewed and discussed several traditional and modern 

DSMs. The discussion of the traditional DSMs served to highlight the importance of sequential 

learning while the discussion of the modern DSMs served to highlight the importance of 

contextualized representations when it comes to word sense disambiguation. Additionally, each 

model has unique implications for human semantic memory and learning which have been 

discussed throughout. By considering the implications and abilities of each model, I aim to support 

the claim that sequential learning and contextualized representations are two necessary constraints 

on human semantic learning that any future research into DSMs should take into consideration.  
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